黒玛程序员 - 边学边练超系统掌握人工智能机器学习算法_资源打包下载


黒玛程序员 - 边学边练超系统掌握人工智能机器学习算法_资源打包下载

课程内容

第一章 机器学习概述

1.人工智能概述

2.人工智能发展历程

3.人工智能主要分支

4.机器学习工作流程

5.机器学习算法分类

6.模型评估

7.Azure机器学习模型搭建实验

8.深度学习简介

第二章 机器学习基础环境安装与使用

1.库的安装

2.jupyter notebook使用

第三章 Matplotlib

1.Matplotlib之HelloWorld

2.基础绘图功能 — 以折线图为例

3.常见图形绘制

第四章 Numpy

1.Numpy的优势

2.N维数组-ndarray

3.基本操作

4.ndarray运算

5.数组间的运算

6.数学:矩阵

第五章 Pandas

1.Pandas介绍

2.Pandas数据结构

3.基本数据操作

4.DataFrame运算

5.Pandas画图

6.文件读取与存储

7.高级处理-缺失值处理

8.高级处理-数据离散化

9.高级处理-合并

10.高级处理-交叉表与透视表

11.高级处理-分组与聚合

12.案例

 

模块二

第一章 K-近邻算法

1.K-近邻算法简介

2.k近邻算法api初步使用

3.距离度量

4.k值的选择

5.kd树

6.案例1:鸢尾花种类预测--数据集介绍

7.特征工程-特征预处理

8.案例1:鸢尾花种类预测--流程实现

9.交叉验证,网格搜索

10.案例2:预测facebook签到位置

第二章 线性回归

1.线性回归简介

2.线性回归api初步使用

3.数学:求导

4.线性回归的损失和优化

5.梯度下降法方法介绍

6.线性回归api再介绍

7.案例:波士顿房价预测

8.欠拟合和过拟合

9.正则化线性模型

10.线性回归的改进-岭回归

11.模型的保存和加载

第三章 逻辑回归

1.逻辑回归介绍

2.逻辑回归api介绍

3.案例:癌症分类预测-良/恶性乳腺癌肿瘤预测

4.分类评估方法

5.ROC曲线的绘制

第四章 决策树算法

1.决策树算法简介

2.决策树分类原理

3.cart剪枝

4.特征工程-特征提取

5.决策树算法api

6.案例:泰坦尼克号乘客生存预测

第五章 集成学习

1.集成学习算法简介

2.Bagging和随机森林

3.Boosting

第六章 聚类算法

1.聚类算法简介

2.聚类算法api初步使用

3.聚类算法实现流程

4.模型评估

不再提供下载

相关资源

发表评论

点 击 提 交