Python 速度慢,试试这个方法提高 1000 倍

发布于 2021-04-29 07:16

点击上方 "Python人工智能技术关注,星标或者置顶
22点24分准时推送,第一时间送达
后台回复“大礼包”,送你特别福利

编辑:技术君 | 作者 | Andrew Zhu 译者 | 苏本如 出品 | CSDN(ID:CSDNnews)

Pythn人工智能技术(ID:coder_experience)第477 次推文

上一篇:2021年,薪酬最高的几门编程语言


正文


龟兔比赛(我6岁儿子 Charles Zhu 的绘画作品)



1、人们一直诟病 Python 程序的速度很慢,它到底有多慢呢?


在每次的编程语言速度竞赛中,Python 的名次通常都比较垫底。有人解释这是因为 Python 是一种解释型语言(代码无需编译即可执行),而所有的解释型编程语言执行速度都很慢。然而,我们知道 Java 也是一种解释型语言,它的字节码是由 JVM 解释的。而在这个基准测试速度比较页面上的结果却显示:Java 要比 Python 的速度快得多。

下面是一个可以用来演示 Python 速度慢的示例。它使用传统的 for 循环来产生一个数的倒数:

import numpy as np
np.random.seed(0)
values = np.random.randint(1, 100, size=1000000)
def get_reciprocal(values):
output = np.empty(len(values))
for i in range(len(values)):
output[i] = 1.0/values[i]
%timeit get_reciprocal(values)

结果显示:

每个循环平均耗时3.37秒(标准偏差±582毫秒)(共计运行了7次程序,每次一个循环)

计算 1,000,000 个倒数竟然需要 3.37 秒。使用 C 语言执行同样的运算只需要不到一眨眼的工夫:9 毫秒;C# 需要 19 毫秒;Nodejs 需要 26 毫秒;Java 仅仅需要 5 毫秒!而 Python 竟然用了让人怀疑人生的 3.37秒(它到底做了些什么)!(注:在本文的最后,我附上了所有语言的测试代码)。



2、Python 速度缓慢的根本原因


我们通常把 Python 称为一种动态类型编程语言。而 Python 程序中的一切变量都是以对象的形式存在,换句话说,每次 Python 代码处理数据时,都需要进行对象拆箱操作,以确定对象的具体类型。在 for 循环内部,每次循环都需要拆箱对象,检查类型并计算倒数。那3秒钟的时间都在类型检查中浪费了。

C 语言和其他传统的编程语言则不同,它们对数据的访问是直接的。但在 Python 中,大量的 CPU 时间都用在了类型检查上。

即使是一个简单的赋值操作也会花费很长的时间。如:

a = 1

这个简单的赋值操作,它需要如下两个步骤:

  • 步骤 1:将 a->PyObject_HEAD->typecode 设置为 Integer 类型.

  • 步骤 2. 将值 1 赋值 a (a->val =1).

关于 Python 为什么速度慢的更多信息,Jake 写的这篇精彩文章值得一读:Why Python is Slow: Looking Under the Hood

那么,有没有一种方法可以绕过类型检查,从而提高 Python 程序的性能呢?



3、答案是:使用 NumPy 通用函数


与 Python 列表(list)不同,NumPy 数组是围绕 C 数组构建的对象。NumPy 数组访问项不需要任何步骤来检查类型。这给我们找到解决方案指明了方向:使用 NumPy 通用函数(亦即UFunc)。

简而言之,UFunc 是一种可以直接对整个数组进行算术运算的方法。下面我们将前面那个慢速的 Python 示例改写为 UFunc 版本,它就像下面这样:

import numpy as np
np.random.seed(0)
values = np.random.randint(1, 100, size=1000000)
%timeit result = 1.0/values

改写后的代码不仅提高了速度,而且代码变得更短。猜猜现在这个程序执行要花多少时间?它比我上面提到的最快的语言快了2.7毫秒


搜索公众号顶级架构师后台回复“面试”,获取一份惊喜礼包。

每个循环平均耗时2.71毫秒(标准偏差±50.8微秒)(共运行了7次程序,每次循环100个)

返回代码,关键是 1.0/values 这一行。这里的 values 不是一个数字,而是一个 NumPy 数组。和除法运算符一样,Numpy 还有许多其他运算符(如下图示)。

点击这里可以找到所有 Ufunc 运算(操作)符。



4、总结


对于那些使用 Python 的人来说,使用 Python 处理数据和数字的可能性很大。这些数据可以存储在 NumPy 或 Pandas DataFrame中,因为DataFrame 是基于 NumPy 实现的。所以 Ufunc 也可以使用。

UFunc 使我们能够以超越几个数量级的更快速度在 Python 中执行重复操作。最慢的 Python 甚至可以跑得 C 语言更快。这一点太让人激动了。



5、附录— C,C#,Java 和 NodeJS 的测试代码


C 语言:

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

int main(){
struct timeval stop, start;
int length = 1000000;
int rand_array[length];
float output_array[length];
for(int i = 0; i<length; i++){
rand_array[i] = rand();
}
gettimeofday(&start, NULL);
for(int i = 0; i<length; i++){
output_array[i] = 1.0/(rand_array[i]*1.0);
}
gettimeofday(&stop, NULL);
printf("took %lu us\n", (stop.tv_sec - start.tv_sec) * 1000000 + stop.tv_usec - start.tv_usec);
printf("done\n");
return 0;
}

C#(.net 5.0):

using System;
namespace speed_test{
class Program{
static void Main(string[] args){
int length = 1000000;
double[] rand_array =new double[length];
double[] output = new double[length];
var rand = new Random();
for(int i =0; i<length;i++){
rand_array[i] = rand.Next();
//Console.WriteLine(rand_array[i]);
}
long start = DateTimeOffset.Now.ToUnixTimeMilliseconds();
for(int i =0;i<length;i++){
output[i] = 1.0/rand_array[i];
}
long end = DateTimeOffset.Now.ToUnixTimeMilliseconds();
Console.WriteLine(end - start);
}
}
}

Java:

import java.util.Random;

public class speed_test {
public static void main(String[] args){
int length = 1000000;
long[] rand_array = new long[length];
double[] output = new double[length];
Random rand = new Random ();
for(int i =0; i<length; i++){
rand_array[i] = rand.nextLong();
}
long start = System.currentTimeMillis();
for(int i = 0;i<length; i++){
output[i] = 1.0/rand_array[i];
}
long end = System.currentTimeMillis();
System.out.println(end - start);
}
}

NodeJS:

let length = 1000000;
let rand_array = [];
let output = [];
for(var i=0;i<length;i++){
rand_array[i] = Math.floor(Math.random()*10000000);
}
let start = (new Date()).getMilliseconds();
for(var i=0;i<length;i++){
output[i] = 1.0/rand_array[i];
}
let end = (new Date()).getMilliseconds();
console.log(end - start);

原文链接:

https://python.plainenglish.io/a-solution-to-boost-python-speed-1000x-times-c9e7d5be2f40


你还有什么想要补充的吗?

免责声明:本文内容来源于网络,文章版权归原作者所有,意在传播相关技术知识&行业趋势,供大家学习交流,若涉及作品版权问题,请联系删除或授权事宜。


技术君个人微信


添加技术君个人微信即送一份惊喜大礼包


→ 技术资料共享

→ 技术交流社群



--END--


往日热文:

Github年度最强的10个Python库

QQ这个功能将关闭,再见了!

Python 密集知识点汇总

15 个让新手爱不释手的 Python 高级库


Python程序员深度学习的“四大名著”:



这四本书着实很不错!我们都知道现在机器学习深度学习的资料太多了,面对海量资源,往往陷入到“无从下手”的困惑出境。而且并非所有的书籍都是优质资源,浪费大量的时间是得不偿失的。给大家推荐这几本好书并做简单介绍。


获得方式:

1.扫码关注本公众号
2.后台回复关键词:名著

▲长按扫描关注,回复名著即可获取

你在看吗?一起成长

相关资源